Structure and transport properties of nanostructured alloys of the novel thermoelectric material SnSe

Norbert Nemes†1, Federico Serrano-Sanchez2, Javier Gainza2, Manuel Funes2, Mouna Gharsallah3, Felix Carrascoso2, Oscar Dura4, Marco Antonio Lopez De La Torre4, Neven Biskup5, Maria Teresa Fernandez-Diaz6, Federico Mompean2, Jose Luis Martinez2, and José Antonio Alonso2

1Department of Materials Physics, Universidad Complutense de Madrid – Avda. de Ciudad Universitaria s/n, Ciudad Universitaria, 28040 Madrid, Spain
2Instituto de Cienca de Materiales de Madrid [Madrid] – Sor Juana Inés de la Cruz 3 Cantoblanco, Madrid 28049, Spain
3University of Sfax – National School of Engineers, Tunisia
4University of Castilla-La Mancha – Department of Applied Physics and INEI, Ciudad Real Spain, Spain
5Department of Materials Physics, Universidad Complutense de Madrid – Avda. de Ciudad Universitaria s/n, Ciudad Universitaria, 28040 Madrid, Spain
6Institut Laue-Langevin – ILL – 6, rue Jules Horowitz BP 156 38042 Grenoble Cedex 9, France

Abstract

Single crystals of the orthorhombic semiconductor SnSe, was identified in 2014 as a mid-temperature thermoelectric material with record high figure of merit with high power factor and surprisingly low thermal conductivity. We have studied polycrystals of various alloys of SnSe prepared by arc-melting, a rapid synthesis that results in strongly nanostructured samples with low thermal conductivity – advantageous for thermoelectricity. The nanostructuring appears on various length scales: the sample consists of tens-of-nm thick crystalline platelets, and these in turn show structural inhomogeneities down to the ~2nm scale. The thermal conductivity reaches the amorphous limit, with values around 0.3-0.5 W/mK. The Seebeck coefficient of some Ge-alloyed SnSe is record high, reaching 1000 µV/K. The electrical conductivity of pure SnSe and alloys with Ge, Sb, In or Pb is rather low, but alloying with transition metals such as Cu, Ag, Nb or Au provides a means to optimize the power factor.

†Speaker

Keywords: SnSe, nanostructuring