Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials

Junjie Yu*, Chenguang Fu2, Yintu Liu1, Kaiyang Xia1, Umut Aydemir3, Thomas Chasapis3, Gerald Snyder3, Xinbing Zhao†1, and Tiejun Zhu‡1

1Zhejiang University – Yuquan campus of Zhejiang University, 38 Zheda Load, Hangzhou, Zhejiang, China
2Max Planck Institute for Chemical Physics of Solids – Nöthnitzer Str. 40, 01187 Dresden, Germany
3Northwestern University [Evanston] – 633 Clark Street, Evanston, IL 60208 Evanston, United States

Abstract

NbFeSb based half-Heusler alloys have been recently identified as promising high temperature thermoelectric materials with a figure of merit $zT > 1$, but their thermal conductivity is still relatively high. Alloying Ta at Nb site would be highly desirable because the large mass fluctuation between them could effectively scatter phonons and reduce the lattice thermal conductivity. However, practically it is a great challenge due to the high melting point of refractory Ta. Here we report on the successful synthesis of Ta alloyed (Nb1-xTax)0.8Ti0.2FeSb ($x = 0-0.4$) solid solutions with significantly reduced thermal conductivity by levitation melting. Because of the similar atomic sizes and chemistry of Nb and Ta, the solid solutions exhibit almost unaltered electrical properties. As a result, an overall zT enhancement from 300 K to 1200 K is realized in the single phase Ta alloyed solid solutions, and the compounds with $x = 0.36$ and 0.4 reach a maximum zT of 1.6 at 1200K. This work also highlights that the isoelectronic substitution by atoms with similar size and chemical nature but large mass difference should reduce the lattice thermal conductivity but maintain good electrical properties in thermoelectric materials, which can be a guide for optimizing the figure of merit by alloying.

Keywords: thermoelectric materials, half, Heusler compound, solid solutions, thermal conductivity

*Speaker
†Corresponding author: zhaoxb@zju.edu.cn
‡Corresponding author: zhutj@zju.edu.cn